حاشیه نویسی خودکار تصاویر با ترکیب ویژگی های سراسری و ناحیه-ای و استفاده از همبستگی کلمات
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده برق و کامپیوتر
- author داوود عبداله زاده
- adviser نصراله مقدم چرکری محمد صنیعی آباده
- Number of pages: First 15 pages
- publication year 1391
abstract
امروزه با فراگیر شدن اینترنت و دسترسی آسان وسایل ضبط تصاویر رقمی، حجم تصاویر رقمی به شدت افزایش پیدا کرده است و در حال رشد است. بنابراین چگونگی بازیابی و جستجوی تصاویر مسئله ی مهمی است که تحقیقات زیادی در مورد آن انجام شده است. یک راه حل مناسب برای این مسئله حاشیه نویسی خودکار تصاویر است که در سال های اخیر مورد توجه بسیاری از محققان قرار گرفته است. حاشیه نویسی خودکار تصاویر فرایند انتساب خودکار کلمات به تصاویر است. در این پژوهش یک چارچوب بر مبنای روش های یادگیری ماشین برای این مسئله پیشنهاد کرده ایم. حاشیه نویسی خودکار تصاویر به عنوان یک مسئله ی دسته بندی چند برچسبی مدل شده است و با توسعه ی الگوریتم knn وزن دار و knn فازی به ترتیب دو دسته بند چند برچسبی dwml-knn و fuzzyml-knn ارائه شده است. خروجی این دسته بندها برای هر تصویر یک بردار امتیاز است که برای ترکیب دسته بندها مناسب است. همچنین این دسته بندها تصاویر مربوط به هر کلمه را رتبه بندی می کنند، همبستگی بین کلمات را نادیده نمی گیرند، نسبت به پارامتر k حساسیت کمی دارند و می توان برای کاربردهای دیگر دسته بندی چند برچسبی از آن ها استفاده کرد. در این پایان نامه بر آنیم تا از هر دو نوع ویژگی های محلی و سراسری به منظور بهره بردن از مزایای آن ها استفاده کنیم. بنابراین چندین بردار ویژگی شامل ویژگی های محلی و ویژگی های سراسری از تصاویر استخراج شده است. برای هر بردار ویژگی یک دسته بند استفاده شده و خروجی دسته بندها با هم ترکیب می شوند. همچنین برای حذف ویژگی های اضافی و بهبود کارایی روش، الگوریتم ژنتیک را برای انتخاب ویژگی بکار برده ایم. برای ارزیابی روش، دو مجموعه داده ی شناخته شده corel5k و iapr tc-12 انتخاب شده اند. در ارزیابی عملکرد حاشیه نویسی (معیار f1) روی مجموعه داده corel5k بهبودی نسبت به بهترین روش نداشته ایم و روی مجموعه داده iapr tc-12 ، 5 درصد بهبود حاصل شده است. همچنین از نظر کیفیت رتبه بندی تصاویر (معیار میانگین دقت متوسط) روی مجموعه داده corel5k و iapr tc-12 به ترتیب 9 و 38 درصد بهبود نسبت به بهترین روش حاصل شده است.
similar resources
حاشیه نویسی خودکار تصاویر پزشکی
در حاشیه نویسی تصاویر پزشکی معمولاً تولید چهار بخش اطلاعاتی در مورد تصاویر لازم است. این بخش ها، شامل اطلاعاتی درباره ی تکنیک تهیه تصویر، اندام، جهت عکس برداری و سیستم بیولوژیکی است. حاشیه نویسی خودکار تصاویر با استفاده از سیستم یادگیری ماشین برای دسته بندی تصاویر به کلاس های مختلف انجام می شود، به طوری که هر کلمه معرف یک دسته است. ورودی سیستم یادگیری ماشین ویژگی های مستخرج از تصویر است. در حاشی...
15 صفحه اولحاشیه نویسی خودکار تصاویر مبتنی بر خوشه بندی دوسطحی بصری و معنایی
حاشیهنویسی خودکار تصاویر به ایجاد خودکار برچسبهای متنی مطابق با محتوای بصری تصاویر دلالت دارد. اگرچه در دهه گذشته تحقیقات فراوانی در این زمینه انجام گرفته است اما وجود برچسبهای متعدد و وجود شکاف معنایی میان این برچسبها و ویژگیهای سطح پایین بصری باعث کاهش دقت و کارایی این سامانهها شده است. در این پژوهش یک روش حاشیهنویسی با استفاده از خوشهبندی دوسطحی بر مبنای ویژگیهای کاهش یافته با الگو...
full textThe Study of Stressful Factors in Clinical Education for Nursing Students Studying in Nursing and Midwifery College in Khorramabad
کچ هدي پ شي مز هني فده و : شزومآ لاب يني شخب ساسا ي شزومآ مهم و راتسرپ ي تسا . و هنوگ ره دوج لکشم ي شزومآ رد لاب يني ، آراک يي هدزاب و ا ني شزومآ زا شخب راچد ار لکشم م ي دنک . فده اب رضاح شهوژپ سررب ي لماوع سرتسا از ي شزومآ لاب يني رد وجشناد ناي راتسرپ ي هدکشناد راتسرپ ي و يامام ي ماـجنا داـبآ مرـخ تسا هتفرگ . شور و داوم راک : رضاح هعلاطم کي هعلاطم صوت يفي عطقم ي تسا . د...
full textThe effect of cyclosporine on asymmetric antibodies and serum transforming growth factor beta1 in abortion-prone model of mice CBA/J x DBA/2
كچ ي هد فده و هقباس : ي ک ي طقس زورب للع زا اه ي ،ررکم ا لماوع تلاخد ي ژولونوم ي ک ا رد ي ن قم طققس عون ي وراد دقشاب ي س ي روپسولک ي ،ن ح لدم رد طقس شهاک بجوم ي ناو ي CBA/j×DBA/2 م ي تنآ ددرگ ي داب ي اه ي ان و راققتم TGF-β لماوع زا عت مهم يي ن گلماح تشونرس هدننک ي سررب روظنم هب رضاح هعلاطم تسا ي ات ث ي ر اس ي روپسولک ي ن م رب ي از ا ي ن تنآ عون ي داب ي س و اه ي اکوت ي ن TGF...
full textبهبود حاشیه نویسی خودکار تصاویر پزشکی با استفاده از تکنیک دسته بندی ترکیبی و ویژگی های رنگ
حاشیه نویسی خودکار، در واقع عمل دسته بندی تصاویر پزشکی می باشد که با استفاده از ویژگی های سراسری و محلی کدهای استاندارد irma برای آن ها استخراج می شود که خود شامل تولید چهار بخش اطلاعاتی (مدالیته، جهت، آناتومی و سیستم بیولوژی) می باشد. تحقیقات اخیر نشان می دهد که علیرغم این که دسته بندهایی با دقت بالا نتایج خوبی را حاصل می کنند ولی نمی توانند همیشه برای تمامی ویژگی های تصاویر به صورت بهینه از ن...
مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده برق و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023